
IMPLEMENTING IMMEDIATE FILES IN

MINIX OPERATING SYSTEM

A THESIS
Submitted by

Shrishty Chandra B110076CS
and

Pragati Maan B110836CS

In partial fulfilment for the award of the degree of

BACHELOR OF TECHNOLOGY
IN

COMPUTER SCIENCE AND ENGINEERING

Under the guidance of
DR MURALI KRISHNAN

DEPARTMENT OF COMPUTER ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

NIT CAMPUS PO, CALICUT
KERALA, INDIA 673601

May 18, 2015

ii

ACKNOWLEDGEMENTS

We would like to express our gratitude and appreciation to all those who

helped us complete this project. First and foremost, we would like to thank our

project guide Dr Murali Krishnan, for his guidance and encouragement. We would

also like to thank Sharath Hari N and Sudev A C, passouts of 2014 batch for their

help in getting us started with the project.

PRAGATI MAAN

SHRISHTY CHANDRA

DECLARATION

“I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which has been accepted for the award of any other
degree or diploma of the university or other institute of higher learning, except
where due acknowledgment has been made in the text”.

Place:
Date:

Signature :
Name :
Reg.No:

CERTIFICATE

This is to certify that the thesis entitled: “IMPLEMENTING IMMEDIATE
FILES IN MINIX OPERATING SYSTEM” submitted by Sri/Smt/Ms to
National Institute of Technology Calicut towards partial fulfillment of the require-
ments for the award of Degree of Bachelor of Technology in Computer Science
Engineering is a bonafide record of the work carried out by him/her under my/our
supervision and guidance.

Signed by Thesis Supervisor(s) with name(s) and date

Place:
Date:

Signature of Head of the Department

Office Seal

v

Contents

Chapter

chapter1 Problem Definition1chapter.1

2 Introduction 2

2.1 Minix . 2

2.2 Immediate File System . 2

2.3 File System in Minix . 3

2.4 File System in Minix 3.2 . 5

2.4.1 Virtual File Systems . 5

2.4.2 System Calls in MFS . 6

2.4.3 Example: Read System Calls in MFS 7

2.4.4 Message passing . 8

3 Design and Implementation 9

3.1 Basic File Structure . 9

3.2 Design and Algorithm Immediate File System 12

3.2.1 Detailed Algorithm to include Immediate files 12

3.2.2 Implementation using dynamic approach 14

4 Further Work 21

4.1 About Website . 21

4.1.1 Guide to Minix . 21

1 Problem Statement 1

vi

4.1.2 Hands-on Tutorials on Minix OS 21

4.1.3 Implementation . 22

4.2 Possible Projects . 22

Bibliography 23

vii

Abstract

In most of the computer systems, accessing disk files acts as the bottleneck in

performance. So while designing, we try to minimise the number of disk accesses.

Immediate file is one solution to this problem. The idea is to store files of small

size in the inode itself, instead of storing the pointers to the disk blocks. Once the

size of the file exceeds the memory available for block pointers in the inode, it is

converted to a regular file. This also saves the disk block, which would otherwise

have been wasted to store a very small size of data ie. internal fragmentation.

Minix is an operating system that was basically created for educational purposes.

It consists of a microkernel that is considered to be highly reliable. We aim at

implemeting the immediate file system in minix 3.2, which includes an abstract

layer called the virtual file system besides the minix file system

Figures

Figure

10

2.1 Minix Layred Structure . 3

2.2 VFS Layer . 6

3.1 Inode Structure . 14

Chapter 1

Problem Definition

Implement support for immediate files in Minix Operating System.

Chapter 2

Introduction

2.1 Minix

Minix was initially developed for educational purposes by Prof. Andrew

Tanenbaum. Minix 3 has a highly reliable, secure and flexible microkernel OS. A

minimal kernel provides

• interrupt handlers

• a mechanism for starting and stopping processes

• a scheduler

• interprocess communication

• deadlock detection

The file system, device drivers, the network server and high level

memory management run as appropriate user processes that are encapsulated

in their private address space.

2.2 Immediate File System

In minix, the metadata of a file is stored in form of inodes. Inodes contain

information such as last access time, modification time, file size, permissions etc.

along with the pointers to the disk block where the data of a file is stores. These

3

Figure 2.1: Minix Layred Structure

pointers either directly refer to a disk block, or they refer to a list of additional

pointers to data blocks (such pointers are called indirect). The problem with a

regular file is that even when it is very short, a complete disk block needs to be

allocated. This wastes disk space.

In immediate files, the data is stored directly in the inode instead of the disk.

An inode in Minix is 64 bytes long, and 40 bytes are used to hold pointers to data

blocks. When no data blocks are used, these 40 bytes can be used to store the file

content directly. Thus, for files up to 40 bytes, immediate files work and hence

getting rid of fragmentation. Another important thing about immediate files is

that the number of disk accesses is reduced for short files and hence reducing the

access time.

2.3 File System in Minix

In minix, File System is basically a network file server that happens to be

running on the same machine as the caller. The communication between vari-

ous abstract layer is via messages. Messages from user include - access, chdir,

chmod, chown, chroot, close, creat etc system calls. The main program in

the file system waits for new messages to arrive and handles the work according

to the parameters passed in the message. There are six sections within the Minix

4

File System:

• Blank Block first block is reserved for boot code information

• Super Block second block stores the Super Block, or information about

the Minix File System

• Inode Map section made up of bits, where one bit represents one inode.

Tracks used and unused inodes.

• Zone Map section made up of bits to track used and unused zones.

• Inode Table manages file and device information

• Data Zone majority of volume which contains files and directories.

5

2.4 File System in Minix 3.2

The file system in minix is more modular than the earlier versions because

of inclusion on Virtual File System. It makes the access to the file systems easier

by providing a uniform interface. When any file operation is to be done, first a

call is made from the user program to the virtual file system, which consecutively

passes in to the appropriate file system.

2.4.1 Virtual File Systems

All the system calls are directed to the Virtual File System, which directs

them to the appropriate File Systems using messages and setting the necessary

flags. The response from the File Systems also arrives at the VFS which sends

it to the user level programs using appropriate message formats and flag sets. It

makes adding new file systems very easy since the interface is taken care of by the

VFS. Roles of VFS are as follows:

• Handles POSIX system calls.

• Maintains state - cooperates with the process manager to handle fork,

exec and exit system calls.

• Keeps track of endpoints that are drivers for character or block special

files.

VFS is synchronous. It sends a request to FS process and waits until the response

arrives. It contains data structures corresponding to almost all the data structures

in File Systems.

• Virtual Nodes : Vnode Object- abstract correspondence of a file. It con-

tains inode number of file , FS Process kernel endpoint number

6

Figure 2.2: VFS Layer

• Virtual Mounts : Vmnt Object- Stores information about the mounted

partitions.

• Contains the kernel endpoint number of the File System that manages the

given partition, device number, mount flags etc.

VFS spawns worker-threads at startup. Main thread fetches requests and

replies and hands them off to the idle or reply pending workers. open.c is an

important file in VFS. It contains procedures for creating, opening, closing and

seeking on files- CREAT, OPEN, MKNOD, MKDIR, CLOSE, LSEEK are

the entry points to this call.

request.c is the file which consists of the functions which pass on the request to

file systems, in proper response messages.

2.4.2 System Calls in MFS

System call is how a user program requests a service from an operating

system’s kernel. Generally, systems have a library which define these system calls.

7

In minix, there are two components to a system call -

• User Library - Packages the parameters for system calls and calls the

handler on appropriate server.

• System call handler -executed in serve processes, called in response to a

user requesting a system call.

In each server directory, there are two important files - table.c and proto.h.

• table.c - contains the information regarding which file is to be called in

reponse to which system call number.

• proto.h - declares the prototype of system call handler.

misc.c, stadir,c, write.c and read.c contain definitions for system call handler func-

tions.

2.4.3 Example: Read System Calls in MFS

n = read(fd, buffer, nbytes) (2.1)

Library procedure read is called with three parameters - file descriptor,

buffer, and number of bytes to be read. It builds a message containing these

parameters along with the code for read as message type, sends the message to

VFS and blocks awaiting the reply. The VFS implementation of the system call is

already explained in VFS section.

In the corresponding file system, a procedure extracts the file descriptor from

the message and uses it to locate the filp (open file table)) entry and then the inode.

The requests are broken up into pieces such that each piece fits within a block. For

each piece, chunk is made to see if the relevant block is in cache. If not then LRU

algorithm is applied. Once the block is in cache, the file system sends message

8

to the system task asking it to copy the data to appropriate place in the user’s

buffer. FS sends the reply message to the user, specifying how many bytes have

been copied.

2.4.4 Message passing

There are many types of messages requesting work in the File System. Mes-

sage passing is basically dealt by the kernel, so, for file system purposes, we just

need to understand how to use messages. Different types of flags and fields are

passed via messages across different layers of the operating system.

Chapter 3

Design and Implementation

3.1 Basic File Structure

The /usr/src/servers/mfs directory contains the source code for FS in

minix3.2 operating system. Some of the important files in mfs are main.c, in-

ode.h, open.c, write.c, buf.h, super.h, super.c, etc. The main function of

each file in mfs are listed below:

• buf.h - Defines the block cache. It contains a union named fsdata u

with following attributes:

∗ b data[MAX BLOCK SIZE], a character array, containing ordi-

nary user data.

∗ b dir[NR DIR ENTRIES(MAX BLOCK SIZE)] - directory

block

∗ b bitmap[[FS BITMAP CHUNKS(MAX BLOCK SIZE)]] -

bitmap block

∗ direct and indirect inode blocks

• cache.c - FS has a buffer cache to reduce the number of disk accesses.

File contains 9 procedures, few of them are listed below.

∗ get block - Fetch a block for reading/writing.

10

∗ put block - Return a block

∗ rw block - Transfer block between disk and cache

∗ free zone - If file is deleted, free the zone

∗ . . .

• const.h - Defines constants, like flags, table size that will be used in the

file system. Few constants are: IN CLEAN, IN DIRTY, ATIME,

CTIME etc

• fs.h - Master header for FS, includes all header files needed by the MFS

source files.

• glo.h - Defines all the global variables. Few examples of global variables

are fs m in, fs m out, err code, fs dev, user path[PATH MAX]

etc.

• inode.h - Contains the stucucture for inode and the inode table as in-

ode[NR INODES]

• inode.c - Contains functions which manages the inode table. The func-

tions are get inode(), put inode(), rw inode(), alloc inode() etc

• main.c - Contains the main routiene of the file system. The main loop

does three activities

∗ get work(&fs m in) - Gets a new work

∗ Processes the work i.e. selects the function to be called using table

of function pointers.

∗ reply(src, &fs m out) - Sends a reply

• open.c - Contains the codes for six system calls: open, close, mknode,

mkdir, close, lseek

11

• proto.h - Lists all function prototypes for all functions used in MFS

• read.c - All functions that are used for reading or writing are present in

read.c. Some of the functions include, fs readwrite, rw chunk, read map

etc.

• super.h - Contains the superblock table. Super block holds information

about inode bitmap, zone bitmaps, inodes etc.

• super.c - Handles the superblock table and other related data structures

like zone bitmap, inode bitmap etc. Major functions in this file are: al-

loc bit(), free bit(), get super(), read super() etc.

• table.c - Contains the table that map system call numbers onto the rou-

tines.

• write.c - Contains files that are not in read.c but are necessary for writing

in a file. Most important functions inwrite.c arewrite map, clear zone,

new block and zero block

12

3.2 Design and Algorithm Immediate File System

There are two ways in which immediate files can be implemented in the minix

operating system:

• Static - In this approach, the maximum file size is specified at the creation

time i.e. user himself specifies whether the file will be immediate or regular

and the file type can’t be changed once it has been created. In case the

immediate file size exceeds the specified size, it will report an error.

• Dynamic - A file is created as an immediate file and if size exceeds spec-

ified size (of immediate files), it becomes a regular file. The user doesnt

have to bother about the size of the file

We have used dynamic approach in our project.

3.2.1 Detailed Algorithm to include Immediate files

13

Algorithm 1 Algorithm to include immediate files in the file system

1: procedure fs readwrite immed

2: is immediate = 0 (0 if regular, 1 if immediate)
3: mode = inode.i mode (regualar or immediate)
4: pos = req msg.LSEEK POS (lseek position)
5: nrbytes = req msg.NBYTES (number if bytes to be read or written)
6: rw flag = req msg.m type (READING or WRITING)
7: f size = inode.f size
8: immed buff [] = “” (temporary array)
9: if mode == I IMMEDIATE then

10: if rw flag == WRITING then
11: if (f size + nrbytes) >MAX IMMEDSIZE then
12: if (pos + nrbytes) <MAX IMMEDSIZE then
13: i immediate = 1
14: else
15: /** Shift from Immediate to regular **/
16: Copy the content of zone to immed buff array
17: Mark all zones as empty zone

18: Change inode.size to zero
19: Change update time of inode
20: Mark the inode dirty

21: Request a new block, bp
22: Copy the immed buff content to bp.data field
23: Mark the block, bp dirty
24: Update pos and f size

25: inode.i mode = REGULAR
26: is immediate = 0 // file is no more immediate
27: end if
28: else
29: is immediate = 1
30: end if
31: else
32: /** reading no change required **/
33: is immediate = 1
34: end if
35: end if
36: if is immediate == 1 then // the file is still immediate
37: Calculate the zone position in the disk
38: Call system read or system write function with zone pos as argument
39: end if
40: end procedure

14

3.2.2 Implementation using dynamic approach

This section will give an overview of what our algorithm actually does.

Data Structures Involved All data strucutres which are related to our

project are listed below

• inode - Structure of an inode in a disk is given in Figure2.2

Figure 3.1: Inode Structure

In Figure 3.1. we can see that there are 7 zones of 4 bytes each, an indirect

15

zone of size 4 bytes, a double indirect node of size 4 bytes and an unused

space of 4 bytes. Each zone points to a disk block where actual data gets

stored. According to definition of immediate files we had to find a space

in the inode where we can store the immediate files. These zones are apt

place to store the immediate files because no data which is critical to the

file is being affected. We calcualted maximum size of immediate files as

40 bytes by adding up sizes of all zones, indirect zones and unused space.

• buffer or block cache - This is a union of different types of blocks in the

disk. Eg. normal data block, directory block, inode block, bitmap block

etc. The design of buffer or block cache is given below,

1 union f s da ta u {

2 /∗ ord inary user data ∗/

3 char b data [MAX BLOCK SIZE] ;

4 /∗ d i r e c t o r y block ∗/

5 struct d i r e c t b d i r [NR DIR ENTRIES(MAX BLOCK SIZE)] ;

6 /∗ V1 i n d i r e c t b lock ∗/

7 zone1 t b v1 ind [V1 INDIRECTS] ;

8 /∗ V2 i n d i r e c t b lock ∗/

9 zone t b v2 ind [V2 INDIRECTS(MAX BLOCK SIZE)] ;

10 /∗ V1 inode block ∗/

11 d1 inode b v1 ino [V1 INODES PER BLOCK] ;

12 /∗ V2 inode block ∗/

13 d2 inode b v2 ino [V2 INODES PER BLOCK(MAX BLOCK SIZE)] ;

14 /∗ b i t map block ∗/

15 b i tchunk t b bitmap [FS BITMAP CHUNKS(MAX BLOCK SIZE)] ;

16 } ;

b data array is used to cache the data which is stored in the disk block,

all the modifications by the user are done here and then the data is written

back to the disk. b data(b) is a macro which returns the pointer to the

16

first byte of b data array.

• message - message structure is defined as follows

1 typedef struct {

2 int m source ; // message source

3 int m type ; // message type

4 union {

5 mess 1 m m1 ;

6 mess 2 m m2 ;

7 mess 3 m m3 ;

8 mess 4 m m4 ;

9 mess 5 m m5 ;

10 mess 7 m m7 ;

11 mess 8 m m8 ;

12 } m u ;

13 } message ;

mess 1, mess 2, mess 3, . . . are different message types. In MFS,

global variables, fs m in and fs m out, of type message are used to

send and recieve messages from various servers like VFS. Following system

calls are used for message passing: echo, notify, sendrec, receive, send.

17

Files involved List of all files in which codes are added or deleted.

• /src/include/const.h - A new flag I IMMEDIATE is created to sup-

port immediate files.

• src/sys/lib/libsa/minixfs3.h - A new flag I IMMEDIATE is created

to support immediate files.

• /src/servers/vfs/open.c - When O CREATE flag is set. Set the file

mode as immediate instead of regular. It will have size zero.

1 /∗ In func t i on common open ∗/

2 i f (o f l a g s & O CREAT) {

3 // we have removed I REGULAR mode

4 omode = I IMMEDIATE | (omode & ALLPERMS & fp−>fp umask)

;

5 vp = new node(&re so l v e , o f l a g s , omode) ;

6 r = e r r c ode ;

7 i f (r == OK) e x i s t = FALSE; /∗ f i l e c r ea ted ∗/

8 else i f (r != EEXIST) { /∗ other e r r o r ∗/

9 i f (vp) unlock vnode (vp) ;

10 un l o c k f i l p (f i l p) ;

11 return (r) ;

12 }

13

• src/sys/sys/stat.h - Following additions are done in this file:

∗ S IFIMMED - macro was defined, similar to regular files

1 #de f i n e S IFIMMED 0130000 /∗ Immediate f i l e s ∗/

2

∗ S IFIMMED - macro redifined for easier usage, similar to regular

files.

18

1 #de f i n e S IFIMMED S IFIMMED /∗ Immediate f i l e s ∗/

2

∗ S ISIMMED(m) - macro defined which checks whether a files is

immediate or not (similar to regular files)

1 /∗ Immediate ∗/

2 #de f i n e S ISIMMED(m) (((m) & S IFMT) == S IFIMMED)

3

• There are 114 more files where we have located S ISREG(m) and added

S ISIMMED(m) also in the code, because regular files and immediate

files have same functionalities except that immediate files are stored in

inode and regular files are stored in disk blocks pointed by zones in the

inode. Few of the files are listed below:

∗ /servers/vfs/select.c

∗ /servers/vfs/link.c

∗ /servers/vfs/read.c

∗ /commands/grep/mmfile.c . . . etc

• /src/severs/mfs/read.c - Major changes/addition for implementation of

immediate file system is done in this file, in the fs readwrite() function.

1 /∗∗ in F i l e read . c ∗∗/

2 /∗∗ s t a r t ∗∗/

3 cum io = 0 ;

4 char immed buff [4 1] ;

5 i f ((r ip−>i mode & I TYPE) == I IMMEDIATE) {

6 int i s immediate ;

7 int i ;

8 i f (rw f l a g == WRITING) {

9 i f ((f s i z e + nrbytes) > 40) {

19

10 i f (p o s i t i o n == 0 && nrbytes <= 40) {

11 i s immediate = 1 ;

12 } else {

13 register struct buf ∗bp ;

14 for (i = 0 ; i < f s i z e ; i++) {

15 immed buff [i] = ∗ (((char ∗) r ip−>i z on e)+i) ;

16 }

17

18 for (i = 0 ; i < V2 NR TZONES; i++) {

19 r ip−>i z on e [i] = NO ZONE;

20 }

21 r ip−> i s i z e = 0 ;

22 r ip−>i update = ATIME | CTIME | MTIME;

23 IN MARKDIRTY(r i p) ;

24

25 bp = new block (r ip , (o f f t) 0) ;

26

27 i f (bp == NULL)

28 panic (” e r r o r ”) ;

29

30 for (i = 0 ; i < f s i z e ; i++) {

31 b data (bp) [i] = immed buff [i] ;

32 }

33

34 MARKDIRTY(bp) ;

35 put b lock (bp , PARTIAL DATA BLOCK) ;

36

37 // same as a f t e r rw chunk i s c a l l e d

38 po s i t i o n += f s i z e ;

39 f s i z e = r ip−> i s i z e ;

40 r ip−>i mode = I REGULAR;

41 i s immediate = 0 ;

42 }

20

43 } else {

44 i s immediate = 1 ;

45 }

46 }

47 i f (i s immediate == 1) {

48 i f (rw f l a g == READING) {

49 r = sy s s a f e c opy t o (VFS PROC NR, gid ,

50 (v i r b y t e s) cum io ,

51 (v i r b y t e s) (r ip−>i z on e + po s i t i o n) ,

52 (s i z e t) nrbytes) ;

53 } else {

54 r = sys sa f e copy f rom (VFS PROC NR, gid ,

55 (v i r b y t e s) cum io ,

56 (v i r b y t e s) (r ip−>i z on e + po s i t i o n) ,

57 (s i z e t) nrbytes) ;

58 IN MARKDIRTY(r i p) ;

59 }

60

61 i f (r == OK) {

62 cum io += nrbytes ;

63 po s i t i o n += nrbytes ;

64 nrbytes = 0 ;

65 }

66 for (int i = 0 ; i < f s i z e ; i++) {

67 immed buff [i] = ∗ (((char ∗) r ip−>i z on e)+i) ;

68 }

69 p r i n t f (”immedbuf : %s \n” , immed buff) ;

70 }

71 }

72 /∗∗ end ∗∗/

Chapter 4

Further Work

4.1 About Website

We have created a website - minixnitc.github.io so that all the further

projects done on minix can be compiled here. All that we learned while working

on the project is posted here.

4.1.1 Guide to Minix

This section consists of notes from the textbook -Design and Implementation

of Operating Systems by Andrew Tanenbaum. Since this book is based on earlier

versions of minix, we have included our own understanding of the code wherever

we found that the system deviates from the test. Because on inclusion of Virtual

File System in MINIX 3.2, there is a considerable difference in File System and

System Call implementation.

4.1.2 Hands-on Tutorials on Minix OS

• www.cs.ucsb.edu/~ravenben/classes/170/html/projects.html

• web.fe.up.pt/~pfs/aulas/lcom2014/labs/doc/MinixMacVB.pdf

• www.cis.syr.edu/~wedu/seed/Documentation/Minix3/How_to_add_system_

call.pdf

minixnitc.github.io
www.cs.ucsb.edu/~ravenben/classes/170/html/projects.html
web.fe.up.pt/~pfs/aulas/lcom2014/labs/doc/MinixMacVB.pdf
www.cis.syr.edu/~wedu/seed/Documentation/Minix3/How_to_add_system_call.pdf
www.cis.syr.edu/~wedu/seed/Documentation/Minix3/How_to_add_system_call.pdf

22

• cise.ufl.edu/class/cop4600sp14/Minix-Syscall_Tutorialv2.pdf

• www.phien.org/ucdavis/ta/ecs150-f03/syscall.html

• wiki.minix3.org/doku.php?id=developersguide:newkernelcall

4.1.3 Implementation

This section consists of detailed explanation of the functions in file system

and VFS which were changed while implementing Immediate files. The relevant

code in implementation has also been explained in detail.

4.2 Possible Projects

Minix is an ever growing system and there are many projects that can be

done based on it at b.tech level, since minix was basically developed for education

purposes. Here are the links to Google Summer Of Code page for Minix

• GSOC 2011 - http://wiki.minix3.org/doku.php?id=soc:2011:start

• GSOC 2012 - http://wiki.minix3.org/doku.php?id=soc:2012:start

• GSOC 2013 - http://wiki.minix3.org/doku.php?id=soc:2012:start

• One can further explore the system for more ideas

cise.ufl.edu/class/cop4600sp14/Minix-Syscall_Tutorialv2.pdf
www.phien.org/ucdavis/ta/ecs150-f03/syscall.html
wiki.minix3.org/doku.php?id=developersguide:newkernelcall
http://wiki.minix3.org/doku.php?id=soc:2011:start
http://wiki.minix3.org/doku.php?id=soc:2012:start
http://wiki.minix3.org/doku.php?id=soc:2012:start

Bibliography

[1] Design and implementation of the minix virtual file system,
http://www.minix3.org/theses/gerofi-minix-vfs.pdf.

[2] Minix3 developers page, http://wiki.minix3.org.

[3] Andrew S. Tanenbaum, S. J. M. Immediate files,
http://dare.ubvu.vu.nl/bitstream/handle/1871/2604/11033.pdf.

[4] Dr Muralikrishnan, Sharath Hari N, S. A. C. Experiments with minix
operating system - http://sudevambadi.me/minixmajor/.

[5] Tanenbaum, A. S. Book: Operating System, Design and Implementation,
Pearson Prentice Hall, 3rd Edition. 1987.

	Problem Definition
	Introduction
	Minix
	Immediate File System
	File System in Minix
	File System in Minix 3.2
	Virtual File Systems
	System Calls in MFS
	Example: Read System Calls in MFS
	Message passing

	Design and Implementation
	Basic File Structure
	Design and Algorithm Immediate File System
	Detailed Algorithm to include Immediate files
	Implementation using dynamic approach

	Further Work
	About Website
	Guide to Minix
	Hands-on Tutorials on Minix OS
	Implementation

	Possible Projects

	 Bibliography

